Fast Ad Jacobians by Compact Lu Factorization
نویسندگان
چکیده
For a vector function, coded without branches or loops, code for the Jacobian is generated by interpreting Griewank and Reese’s Vertex Elimination as Gaussian elimination, and implementing this as compact LU factorization. Tests on several platforms show such code is typically 4 to 20 times faster than that produced by tools such as Adifor, Tamc or Tapenade, on average significantly faster than Vertex Elimination code produced by the EliAD tool (Tadjouddine et al. in LNCS vol. 2330, 2002) and can outperform a hand-coded Jacobian. The LU approach is promising, e.g., for CFD flux functions that are central to assembling Jacobians in finite element or finite volume calculations, and in general for any inner-loop basic block whose Jacobian is crucial to an overall computation involving derivatives.
منابع مشابه
Fast Automatic Differentiation Jacobians by Compact LU Factorization
For a vector function coded without branches or loops, a code for the Jacobian is generated by interpreting Griewank and Reese’s vertex elimination as Gaussian elimination and implementing this as compact LU factorization. Tests on several platforms show such a code is typically 4 to 20 times faster than that produced by tools such as Adifor, Tamc, or Tapenade, on average significantly faster t...
متن کاملTHE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA
The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملFast genus 2 arithmetic based on Theta functions
In 1986, D. V. Chudnovsky and G. V. Chudnovsky proposed to use formulae coming from Theta functions for the arithmetic in Jacobians of genus 2 curves. We follow this idea and derive fast formulae for the scalar multiplication in the Kummer surface associated to a genus 2 curve, using a Montgomery ladder. Our formulae can be used to design very efficient genus 2 cryptosystems that should be fast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007